This function calculates the state membership (Markov trace) for different health states based on predicted survival curves.
Arguments
- df_survival_curves_long
A data frame containing the predicted cumulative survival curves in long format with columns for time, treatment, end_point, and survival probabilities.
- l_params
A list of model parameters including the list of parameters in the list
l_psm_parameters
in addition to:time_horizon
: The time horizon for the model in years.cycle_length
: The length of a model cycle measured in years.disc_rate_costs
: The annual discount rate for incurred costs.disc_rate_qalys
: The annual discount rate for accrued QALYs.
Value
A data frame in wide format with columns for time, treatment, and states occupancy (`EFS`, `PPS`, `D`).
Examples
if (FALSE) { # \dontrun{
# Load the fitted Gompertz model parameters
models_fit <- NeuroblastomaPSM::parametric_models
# Define model parameters
params <- c(
time_horizon = 10,
cycle_length = 1/12,
disc_rate_costs = 0.035,
disc_rate_qalys = 0.015,
NeuroblastomaPSM::l_psm_parameters
)
# Predict cumulative survival
df_survival_curves_long <- NeuroblastomaPSM::predict_cumulative_survival(
models_fit = models_fit,
l_params = params
)
# Generate Markov trace
df_markov_trace <- NeuroblastomaPSM::calculate_markov_trace(
df_survival_curves_long = df_survival_curves_long,
l_params = params
)
rbind(
head(df_markov_trace, n = 5),
tail(df_markov_trace, n = 5)
)
# Define model parameters - longer time horizons triggers cure_threshold
params2 <- c(
time_horizon = 25,
cycle_length = 1/12,
disc_rate_costs = 0.035,
disc_rate_qalys = 0.015,
NeuroblastomaPSM::l_psm_parameters
)
# Predict cumulative survival
df_survival_curves_long2 <- NeuroblastomaPSM::predict_cumulative_survival(
models_fit = models_fit,
l_params = params2
)
# Generate Markov trace
df_markov_trace2 <- NeuroblastomaPSM::calculate_markov_trace(
df_survival_curves_long = df_survival_curves_long2,
l_params = params2
)
rbind(
head(df_markov_trace2, n = 5),
tail(df_markov_trace2, n = 5)
)
} # }