This function predicts cumulative survival curves using fitted survival models over a specified time horizon.
Arguments
- models_fit
A named list of fitted survival models.
- l_params
A list of model parameters including the list of parameters in the list
l_psm_parameters
in addition to:time_horizon
: The time horizon for the model in years.cycle_length
: The length of a model cycle measured in years.disc_rate_costs
: The annual discount rate for incurred costs.disc_rate_qalys
: The annual discount rate for accrued QALYs.
Value
A data frame containing the predicted cumulative survival curves with columns for time, treatment, and survival probabilities for different endpoints.
Examples
if (FALSE) {
# Load the fitted Gompertz model parameters
models_fit <- NeuroblastomaPSM::parametric_models
# Define model parameters
params <- c(
time_horizon = 10,
cycle_length = 1/12,
disc_rate_costs = 0.035,
disc_rate_qalys = 0.015,
NeuroblastomaPSM::l_psm_parameters
)
# Predict cumulative survival
df_survival_curves_long <- NeuroblastomaPSM::predict_cumulative_survival(
models_fit = models_fit,
l_params = params
)
rbind(
head(df_survival_curves_long, n = 5),
tail(df_survival_curves_long, n = 5)
)
}