Interpolate Survival Curve for a Range of Ages
Source:R/adjust_survival_curve.R
interpolate_survival_curve.Rd
This function fits a regression model to interpolate (calculate) the probability of dying for a range of user-specified ages. The fitted model regresses the cumulative hazard rate, which is transformed from the input survival function (curve), on the corresponding age. The cumulative hazard (\(H(t)\)) is related to the survival function (\(S(t)\)) by: $$H(t) = -\log(S(t))$$ where \(S(t)\) is the survival probability up to time \(t\).
Usage
interpolate_survival_curve(
survival_curve_ages,
survival_curve,
target_ages,
interpolation_model = "gam",
smr_multiplier = 1
)
Arguments
- survival_curve_ages
A numeric vector representing the ages corresponding to the survival probabilities.
- survival_curve
A numeric vector of mortality probabilities (the probability of dying) corresponding to `age`.
- target_ages
A numeric vector of ages for which the hazard rates are to be predicted.
- interpolation_model
A character string specifying the model to use for fitting the log cumulative hazard. Options are "gam" (default) for Generalized Additive Model and "spline" for spline model.
- smr_multiplier
A numeric value representing the Standardized Mortality Ratio (SMR) multiplier. The SMR is used to adjust the mortality rates of the population under study compared to a standard population. An SMR of 1 (default) indicates no difference in mortality rates, while an SMR greater than 1 indicates higher mortality in the study population.
Examples
if (FALSE) { # \dontrun{
# Define age range and survival probabilities
model_starting_age <- NeuroblastomaPSM::l_psm_parameters$age
df_lifeTable <- NeuroblastomaPSM::df_lifeTable_Jordan
age <- df_lifeTable$`Age Group`
mortality_probs <- df_lifeTable$`Both sexes`
mortality_probs <- mortality_probs[age >= model_starting_age]
age <- age[age >= model_starting_age]
# Calculate the survival curve for the modeled cohort
survival_curve <- NeuroblastomaPSM::get_lifeTable_survival_curve(
mortality_probs = mortality_probs
)
# Define output ages
target_ages <- seq(model_starting_age, 29, 7/365)
# Interpolate Survival Curve
v_interpolated_curve <- NeuroblastomaPSM::interpolate_survival_curve(
survival_curve_ages = age,
survival_curve = survival_curve,
target_ages = target_ages
)
v_interpolated_curve
# Define output ages
target_ages2 <- seq(min(age), max(age), 7/365)
# Interpolate Survival Curve
set.seed(1)
v_interpolated_curve2 <- NeuroblastomaPSM::interpolate_survival_curve(
survival_curve_ages = age,
survival_curve = survival_curve,
target_ages = target_ages2
)
v_interpolated_curve2
# Compare fitted and observed survival curves
plot(x = age, y = survival_curve, xlab = "Age", ylab = "Survival")
lines(x = target_ages2, y = v_interpolated_curve2, col = "blue")
# Interpolate Survival Curve with a SMR = 5.6
set.seed(1)
v_interpolated_curve3 <- NeuroblastomaPSM::interpolate_survival_curve(
survival_curve_ages = age,
survival_curve = survival_curve,
target_ages = target_ages2,
smr_multiplier = NeuroblastomaPSM::l_psm_parameters$smr_EFS
)
v_interpolated_curve3
# Compare fitted and observed survival curves
plot(x = age, y = survival_curve, xlab = "Age", ylab = "Survival")
lines(x = target_ages2, y = v_interpolated_curve2, col = "blue")
lines(x = target_ages2, y = v_interpolated_curve3, col = "orange")
# Interpolate Survival Curve with a SMR = 5.6 * 1.9
set.seed(1)
v_interpolated_curve4 <- NeuroblastomaPSM::interpolate_survival_curve(
survival_curve_ages = age,
survival_curve = survival_curve,
target_ages = target_ages2,
smr_multiplier = NeuroblastomaPSM::l_psm_parameters$smr_PPS
)
v_interpolated_curve4
# Compare fitted and observed survival curves
plot(x = age, y = survival_curve, xlab = "Age", ylab = "Survival")
lines(x = target_ages2, y = v_interpolated_curve2, col = "blue")
lines(x = target_ages2, y = v_interpolated_curve3, col = "orange")
lines(x = target_ages2, y = v_interpolated_curve4, col = "red")
} # }